3.341 \(\int (a+b x^2)^p (c+d x^2)^q \, dx\)

Optimal. Leaf size=79 \[ x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (c+d x^2\right )^q \left (\frac{d x^2}{c}+1\right )^{-q} F_1\left (\frac{1}{2};-p,-q;\frac{3}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right ) \]

[Out]

(x*(a + b*x^2)^p*(c + d*x^2)^q*AppellF1[1/2, -p, -q, 3/2, -((b*x^2)/a), -((d*x^2)/c)])/((1 + (b*x^2)/a)^p*(1 +
 (d*x^2)/c)^q)

________________________________________________________________________________________

Rubi [A]  time = 0.0429968, antiderivative size = 79, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {430, 429} \[ x \left (a+b x^2\right )^p \left (\frac{b x^2}{a}+1\right )^{-p} \left (c+d x^2\right )^q \left (\frac{d x^2}{c}+1\right )^{-q} F_1\left (\frac{1}{2};-p,-q;\frac{3}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^p*(c + d*x^2)^q,x]

[Out]

(x*(a + b*x^2)^p*(c + d*x^2)^q*AppellF1[1/2, -p, -q, 3/2, -((b*x^2)/a), -((d*x^2)/c)])/((1 + (b*x^2)/a)^p*(1 +
 (d*x^2)/c)^q)

Rule 430

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^F
racPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \left (a+b x^2\right )^p \left (c+d x^2\right )^q \, dx &=\left (\left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p}\right ) \int \left (1+\frac{b x^2}{a}\right )^p \left (c+d x^2\right )^q \, dx\\ &=\left (\left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} \left (c+d x^2\right )^q \left (1+\frac{d x^2}{c}\right )^{-q}\right ) \int \left (1+\frac{b x^2}{a}\right )^p \left (1+\frac{d x^2}{c}\right )^q \, dx\\ &=x \left (a+b x^2\right )^p \left (1+\frac{b x^2}{a}\right )^{-p} \left (c+d x^2\right )^q \left (1+\frac{d x^2}{c}\right )^{-q} F_1\left (\frac{1}{2};-p,-q;\frac{3}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )\\ \end{align*}

Mathematica [B]  time = 0.220684, size = 172, normalized size = 2.18 \[ \frac{3 a c x \left (a+b x^2\right )^p \left (c+d x^2\right )^q F_1\left (\frac{1}{2};-p,-q;\frac{3}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )}{2 x^2 \left (b c p F_1\left (\frac{3}{2};1-p,-q;\frac{5}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )+a d q F_1\left (\frac{3}{2};-p,1-q;\frac{5}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )\right )+3 a c F_1\left (\frac{1}{2};-p,-q;\frac{3}{2};-\frac{b x^2}{a},-\frac{d x^2}{c}\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^2)^p*(c + d*x^2)^q,x]

[Out]

(3*a*c*x*(a + b*x^2)^p*(c + d*x^2)^q*AppellF1[1/2, -p, -q, 3/2, -((b*x^2)/a), -((d*x^2)/c)])/(3*a*c*AppellF1[1
/2, -p, -q, 3/2, -((b*x^2)/a), -((d*x^2)/c)] + 2*x^2*(b*c*p*AppellF1[3/2, 1 - p, -q, 5/2, -((b*x^2)/a), -((d*x
^2)/c)] + a*d*q*AppellF1[3/2, -p, 1 - q, 5/2, -((b*x^2)/a), -((d*x^2)/c)]))

________________________________________________________________________________________

Maple [F]  time = 0.076, size = 0, normalized size = 0. \begin{align*} \int \left ( b{x}^{2}+a \right ) ^{p} \left ( d{x}^{2}+c \right ) ^{q}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^p*(d*x^2+c)^q,x)

[Out]

int((b*x^2+a)^p*(d*x^2+c)^q,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b x^{2} + a\right )}^{p}{\left (d x^{2} + c\right )}^{q}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p*(d*x^2+c)^q,x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^p*(d*x^2 + c)^q, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b x^{2} + a\right )}^{p}{\left (d x^{2} + c\right )}^{q}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p*(d*x^2+c)^q,x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^p*(d*x^2 + c)^q, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**p*(d*x**2+c)**q,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b x^{2} + a\right )}^{p}{\left (d x^{2} + c\right )}^{q}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p*(d*x^2+c)^q,x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^p*(d*x^2 + c)^q, x)